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Abstract

Traditional risk parity maximizes risk diversification in a portfolio, an extremely desirable characteristic which
has been explored extensively. However, algorithms for risk parity are return agnostic, i.e., the risk measure to
measure risk in a portfolio is chosen to be portfolio volatility for mathematical and computational convenience.
Efforts in portfolio optimization literature have been made to incorporate expected returns into risk parity, but
due to the complex nature of the problem, these efforts do not provide guarantees on how much risk is diversified
in a portfolio. Moreover, efforts in this direction provide relaxations to return based risk parity as an optimization
problem which can show arbitrarily bad risk diversification. In this paper, we provide algorithms that find portfolios
that are closest, in some mathematical sense, to a risk parity portfolio along with a return target. This enables us
to overcome the return-agnostic nature of risk parity while finding portfolios with good risk diversification.

Keywords: risk parity; risk budgeting; portfolio selection; convex optimization for portfolio selection; convex
framework for return-based risk parity; risk diversification; guarantees on risk spread

1 Problem Introduction
We denote by a risk measure R(x) : Rn → R to be a positive homogeneous function of degree one in portfolio weights
as in [1] and [2]. Examples of positively homogeneous risk measures include portfolio volatility, value-at-risk (VaR)
and any other coherent risk measures such as conditional value-at-risk (CVaR) [1]. Equal Risk Contribution (ERC),
which was first coined by [9], [8] and then extensively studied by [19] and [15]. ERC aims to find a portfolio x that
assigns equal risk share RCi(x) to all assets being traded, indexed by set [n]. We define our risk measure for a given
covariance matrix Σ to be volatility, that is,

R(x) =
√
x⊤Σx

and define risk contribution of asset i ∈ [n] = {1, 2, . . . , n}, RCi(x) by,

RCi(x) = xi
∂R(x)

∂x
=

∂
√
x⊤Σx

∂xi
xi =

(Σx)i√
x⊤Σx

xi

Moreover, we have a Euler decomposition for a risk measure [14], [23] defined as above, that is, for a homogeneous
function f(x) of degree k, we have that,

kf(x) = ∇f(x)⊤x

implying the following decomposition of our risk measure,

R(x) =

n∑
i=1

RCi(x)

Therefore, we define the set of risk parity or equal risk contribution (ERC) portfolios (without short selling) SERC by

SERC =
{
x : RCi(x) = RCj(x) ∀i, j ∈ [n], x ≥ 0, 1⊤x = 1

}
The performance of these portfolios [19], [24] and their volatility [6] has been studied extensively and provide a

great balance between diversification in allocation and risk ([19], [18],[22]). Significant work has been put into relaxing
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the risk parity condition and budgeting the risks from each asset in portfolios called risk budgeting (RB) portfolios [4],
[14], [13], [3].Although risk diversification is a desirable property, if we choose our risk measure as portfolio volatility
defined above, our allocation turns out to be return-agnostic. Work has been done in designing (RB) portfolios
with Markowitz risk measure ([12]) that takes expected returns into account ([14], [21]), however the problem is either
solvable only under certain conditions or non-convex and hard to solve numerically, unlike risk parity portfolios [10]. In
this paper, we present an alternative approach wherein we diversify risk with a return target as hinted in the heuristic
approach of [11] and formalize it with theoretical guarantees. We adopt the principle of diversifying risk contributions
to improve returns ([7],[16]) by satisfying approximate risk parity whilst providing bounds on how much the risk is
diversified and taking returns into account. To this end, consider the following hypothetical example. We have two
assets: one risk-free asset with an expected return of rf and variance σ2

1 , and one risky asset with an expected return
of rR and variance σ2

2 . For simplicity, assume that the two assets are uncorrelated. The covariance matrix is thus
given by

Σ =

[
σ2
1 0
0 σ2

2

]
where we assume σ1 ≪ σ2 and that rR ≥ 2rf . An ERC portfolio yields

RC1(x) = x2
1σ

2
1 = x2

2σ
2
2 = RC2(x)

which gives the allocations

x1 =
σ2

σ1 + σ2
, x2 =

σ1

σ1 + σ2

Clearly, we have x1 ≫ x2. However, if a manager requires an expected return of at least 2rf , this would not be
achievable through our portfolio. To overcome this effect, we aim to design portfolios that have a return target and
are risk diversified (i.e. total risk distributed among RCi(x) as evenly as possible) as per certain spread metrics, Θ.
These spread metrics measure the risk diversification in our algorithms and are designed such that

- Can be optimized to diversify risks, we provide details of their analytical forms in the next sections

- Give risk parity portfolio xp with return Rp for return targets less than Rp

Formalizing this notion, we have the following definition of a spread metric Θ : ∆ → R, that we use to measure
diversification in our portfolio,

Definition (Risk Spread Measure): Let rc : ∆ → Rn be a function defined as,

rc(x) = (RC1(x), . . . ,RCn(x))

A risk spread measure Θ is a composition, θ ◦ rc : ∆ → R that is a continuous function on the domain:

X =
{
x
∣∣∣ RCj(x) > 0, ∀j

}
s.t. risk parity portfolio is a unique solution to the problem.

min
x∈PRp

Θ(x)

Here, θ(x) is our diversification function

Our domain X helps in the analysis of the algorithms that we describe in the later sections. Some examples of
θ that construct a valid spread metric are maxj

xi∑n
i=1 xi

, maxi,j
xi

xj
, maxi,j

∣∣xi − xj

∣∣, ∑
i,j(xi − xj)

p, for even p.
We call θ our diversification function. These functions help us formalize the notion of diversification, as all of the
above functions become larger when risks are ’unevenly’ distributed. In other words, argminx θ(x) is given by the set,
O =

{
x ∈ Rn

∣∣ xi = xj , ∀i, j
}

They give us a framework under which we can evenly distribute risk and think about
risk diversification. For instance, when θ(x) = maxj

xi∑n
i=1 xi

, we demand the maximum risk in our portfolio to be
minimized w.r.t the total risk, causing the maximum risk to lie as close as possible to the average risk in the portfolio,
which can be one way to define diversification. When Θ = θ ◦ rc is minimized subject to x ∈ PRp , it is easily seen
that,

Θ(x) ≥ 1

n
, with equality ⇐⇒ x = xp

Thus justifying the fact that Θ is a valid spread metric. Defining as in [19], θ(x) =
∑

i,j(xi − xj)
2, we get a spread

measure Θ that gives risk parity portfolio when minimized subject to x ∈ PRP . Moreover if we demand return greater
than Rp, this spread metric helps us find a risk diversified portfolio that does so. The fact that it is a spread measure
follows simply from the uniqueness and existence of the risk parity portfolio,
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Θ(x) ≥ 0, with equality ⇐⇒ RCi(x) = RCj(x) ∀i, j

The uniqueness of the risk parity portfolios explains why the other θ(x) we provided above construct valid risk
spreads. In [20] we saw a risk spread measure, Θ where θ(x) = maxi,j {xi − xj},

Θ(x) = max
i,j

{RCi(x)−RCj(x)}

While being a risk spread measure, the above quantity is bounded,

min

{
0,min

i,j
Σi,j

}
≤ (Σx)ixi ≤ max

i,j
Σi,j

⇒ Θ ≤ maxi,j Σi,j −min {0,mini,j Σi,j}√
x⊤Σx

≤ maxi,j Σi,j −min {0,mini,j Σi,j}
V∗

Here, V∗ is optimal value of the minimum volatility problem,

min
x

√
x⊤Σx

s.t.
n∑

i=1

xi = 1

Note that since we assumed Σ ≻ 0, the optimal value V∗ =
√
x∗TΣx∗ > 0. The optimal value can be trivially

computed. First order optimality conditions imply for lagrange multiplier µ corresponding to
∑n

i=1 xi = 1,

x = µΣ−1e

⇒
n∑

i=1

xi = µe⊤Σ−1e = 1

⇒ µ =
1

e⊤Σ−1e

⇒ V∗ =
√
µe⊤(Σ−1Σ)µΣ−1e =

√√√√√ 1∑
i,j

Σ−1
i,j

We can construct instances where this bound is tight. We define tightness as: ∃Σ under which an optimal algorithm
A achieves ∀ϵ ∈ R+,

Θ >
maxi,j Σi,j −min {0,mini,j Σi,j}

V∗ − ϵ

Simply meaning for certain instances of Σ we cannot bound the risk spread better than maxi,j Σi,j−min{0,mini,j Σi,j}
V∗

To show this, consider Σ′ =

[
1 1− δ

1− δ 1

]
≻ 0, and r = (r1, r2), r2 > r1. If algorithm A has to find a portfolio

(x, y) that maximizes return subject to y ≤ δ. It is easily seen that (x, y) = (1− δ, δ), its risk spread in the limit δ → 0
is given by,

lim
δ→0

Θ = lim
δ→0

∣∣∣∣∣ (1− δ)3 − (1− δ)2δ − δ2√
(1− δ)3 + δ(1− δ)2 + δ2

∣∣∣∣∣ = 1

Now, V∗ is the optimal value of the problem,

min
x

√
(x+ y)2 − 2δxy

s.t. x+ y = 1

which is clearly equivalent to the problem with the objective squared,

min
x,y

1− 2δx(1− x)

s.t. x ∈ R
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Hence, the minimum occurs at x = 1
2 , therefore V∗ =

√
1− δ

2 . Now for our bound on Θ,

lim
δ→0

maxi,j Σ
′
i,j −min

{
0,mini,j Σ

′
i,j

}
V∗ = lim

δ→0

(
1√

1− δ/2

)
= 1

Hence,

lim
δ→0

Θ = lim
δ→0

maxi,j Σ
′
i,j −min

{
0,mini,j Σ

′
i,j

}
V∗ = 1

While the above example is obscure, it only serves to prove the tightness of our naive bound. While the paper
bounds the above spread much better than this naive bound to achieve near optimal risk budgeting for higher target
returns, no effort is made to optimize this quantity directly. In this paper, we choose appropriate risk spread metrics
and aim to minimize them to achieve risk diversified portfolios for higher target returns. In other words, we aim to
solve the optimization problem,

min
x∈PR

Θ(x)

where,

PR =
{
x : r⊤x ≥ R, 1⊤x = 1, x ≥ 0

}
Another example of such a spread metric as mentioned before is the risk ratio in our portfolio, where we set

θ(x) = maxi,j
xi

xj

ΘR = max
i,j

RCi(x)

RCj(x)

It can be easily seen risk ratio is a spread metric. This is because

ΘR = max
i,j

RCi(x)

RCj(x)
≥ 1

with equality for risk parity. Moreover, at equality we have risk parity as the contributions are all equal, and the
uniqueness of the minimum follows from the uniqueness of risk parity. Connecting this to our example above, instead
of risk parity if we solve the following optimization problem that minimizes risk ratio,

min
x

max
i,j

RCi(x)

RCj(x)
, i ∈ [2], j ∈ [2]

s.t. r⊤x ≥ 2rf

1⊤x = 1

x ≥ 0

We can now rewrite this problem, using our expressions for risk contributions as,

min
x

max
i,j

σixi

σjxj
, i ∈ [2], j ∈ [2]

s.t. r⊤x ≥ 2rf

1⊤x = 1

x ≥ 0

We now get a portfolio that tries to squeeze the risk contributions, to make the risk ratio as small as possible,
hence diversifying our risk contributions. The above problem is equivalent to

min
x

t

u

s.t. t ≥ σixi ,∀i ∈ [2]

u ≤ σjxj ,∀j ∈ [2]

r⊤x ≥ 2rf

1⊤x = 1

x ≥ 0
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Connecting this to our example above, instead of risk parity if we solve the following optimization problem that
minimizes risk ratio:

min
x

max
i,j

σixi

σjxj
, i ∈ [2], j ∈ [2]

s.t. r⊤x ≥ 2rf ,

1⊤x = 1,

x ≥ 0

This can be rewritten equivalently by introducing auxiliary variables t and u, which serve as upper and lower
bounds for σixi and σjxj , respectively. This leads to the reformulated problem:

min
x,t,u

t

u

s.t. t ≥ σixi, ∀i ∈ [2],

u ≤ σjxj , ∀j ∈ [2],

u ≥ 0,

r⊤x ≥ 2rf ,

1⊤x = 1,

x ≥ 0.

The equivalence follows from the fact that minimizing the worst-case ratio maxi,j(σixi/σjxj) is equivalent to
minimizing t/u while ensuring that t and u properly bound the respective terms. Now ,if we consider the following
change of variables,

t

u
→ y,

x

u
→ z,

1

u
→ v

and,

z

v
→ x,

y

v
→ t,

1

v
→ u

We get the following equivalent linear program,

min
x

y

s.t. y ≥ σizi ,∀i ∈ [2]

1 ≤ σjzj ,∀j ∈ [2]

r⊤z ≥ 2rfv

1⊤z = v

z ≥ 0

Here our spread metric was, Θ(x) = maxi,j
RCi(x)
RCj(x)

with the optimal solution being x∗ = z∗

v∗ . Here it is easily seen
that, if our return target is less than or equal to the return of risk parity, minx∈Pr∗ Θ(x) = 1 with optimal x = x∗.
For a larger target, our spread metric tries to squeeze the ratio between the maximum and the minimum risk, which
is one way to achieve diversification. More so we can generalize this to more than two assets, giving us a solution for
optimal risk budgeting involving target returns (ORBIT), in the uncorrelated case. This is done by the following linear
program-

min
x

y

s.t. y ≥ σizi ,∀i ∈ [n]

1 ≤ σjzj ,∀j ∈ [n]

r⊤z ≥ 2rfv

1⊤z = v

z ≥ 0

We now do the same for the following for another spread metric, least invested risk ratio, ΘL defined by,
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ΘL(x) = −min
j

RCj(x)
n∑

i=1

RCi(x)

This spread metric tries to push the least invested risk as high as possible to encourage risk diversification. It
easily follows that this is a spread metric. Using the same problem data as above, i.e. diagonal Σ, r and target R, we
can maximize the negative of ΘL. The optimization problem is given by,

max
x

min
i

σ2
i x

2
i∑n

i=1 σ
2
i x

2
i

s.t. r⊤x ≥ 2rf

1⊤x = 1

x ≥ 0

Using the same trick as we used above, this is equivalent to,

max
x

u2∑n
i=1 σ

2
i x

2
i

s.t. u ≤ σixi

r⊤x ≥ 2rf

1⊤x = 1

x ≥ 0

Now if we consider the following change of variables,

x

u
→ z,

1

u
→ v

and,

z

v
→ x,

1

v
→ u

we get the following equivalent QP for maximizing least invested risk,

min
z

z⊤Σz

s.t. 1 ≤ σizi

r⊤z ≥ 2rfv

1⊤z = v

z ≥ 0

The following sections tries to solve risk diversification problem with two spread metrics, i.e. least invested risk
ratio ΘL(x) = −minj

RCj(x)∑n

i=1
RCi(x)

and worst case risk ratio ΘR(x) = maxi,j
RCi(x)
RCj(x)

. We call the former algorithm

LIRA and the latter ORBIT. We already saw that there is an efficient way (polynomial time) of solving ORBIT in the
uncorrelated case. In the following sections we highlight the complexities of the general cases and provide exact and
approximation algorithms (with bounds depending only on problem data i.e. Σ and target return) for solving these
problems. Next we provide definitions that we will used repeatedly in the defining our algorithms and the proof of
their performance guarantees.

2 Definitions
We introduce the following key definitions used throughout this paper:

- Risk Measure:
R(x) =

√
x⊤Σx

where R(x) represents the risk measure applied to the portfolio weights x.
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- Risk Contribution:
RCi(x) = xi

∂R(x)

∂x

which defines the risk contribution of the ith asset in a portfolio weighted by x, consistent with the risk parity
framework.

- Return-Constrained Portfolio Set PR:

PR =
{
x
∣∣∣ r⊤x ≥ R, 1⊤x = 1, x ≥ 0

}
representing the set of portfolio allocations that satisfy a minimum return requirement while ensuring full allo-
cation and non-negativity constraints.

- Attainable Return-Risk Set Rr,γ :

Rr,γ =
{
R
∣∣∣∃x > 0 such that r⊤x ≥ R

}
characterizing the set of attainable returns R that can be achieved while satisfying the given risk constraints.

- Risk Spread Metric Θ:
A risk spread measure Θ : ∆ → R is a continuous function on the domain:

X =
{
x
∣∣∣ RCj(x) > 0, ∀j

}
s.t. risk parity parity portfolio is a unique solution to the problem

min
x∈PRp

Θ(x)

3 Algorithms for Optimal Risk Budgeting Involving Targets (ORBIT)
We now provide algorithms for performing diversified risk budgeting with target returns. In the algorithms we provide,
we do not allow short selling, i.e., x ≥ 0. This helps facilitate the construction of efficient algorithms to find desired
portfolios.

3.1 Least Invested Risk Amplifier-LIRA
Our first algorithm, LIRA aims to maximize the following quantity,

max
x∈PR

min
j

RCj(x)
n∑

i=1

RCi(x)︸ ︷︷ ︸
Least Investment Risk Ratio, ΘL

The quantity represents the proportion of risk contributed by the least risky asset, maximizing this quantity
represents diversifying our risk contributions. The problem can be rewritten as

max
x∈PR

min
j

xj(Σx)j
x⊤Σx

Our numerator is a quadratic form x⊤Σ(j)x, where

Σ
(i)
k,l =


Σi,l

2 k = i, l ̸= i
Σi,l

2 l = i, k ̸= i

Σi,i i = k = l

0 o.w.

We show that this symmetric matrix has a negative eigenvalue, making our problem potentially complicated.
However, we have the following theorem,

Theorem 2. (LIRA) There exists an efficient algorithm A that finds x∗ solving maxx∈PR minj
RCj(x)∑n

i=1
RCi(x)

, for risk

measure R(x) =
√
x⊤Σx
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Here (and in subsequent algorithms), we define an efficient algorithm as the existence of a convex program
whose solution provides us with the desired portfolio. Using the result of Theorem 1, we have the following algorithm:

Algorithm 1 LIRA

Input: Σ ≻ 0 and return target R

1. Solve the convex problem

min z⊤Σz

s.t.

∥∥∥∥∥∥
 1

zj
(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j

r⊤z = w

1⊤z = w

and obtain optimal solution (z∗, w∗)

return x∗ = z∗

w∗

We now have the following corollary:

Corollary 3. Let rERC be return of an ERC portfolio, with Σ. If R ≤ rERC, and x∗ is an optimal solution for LIRA, then
x∗ = xp, where xp is an ERC portfolio given Σ.

This shows that if our return target is less than or equal to the return of an ERC portfolio, LIRA returns an ERC
portfolio. For greater return targets, LIRA will push minj

RCj(x)∑n

i=1
RCi(x)

as close to 1
n as possible.

3.2 Overcoming the Pitfalls of LIRA: ORBIT
While LIRA provides a way to diversify our risks with a return target, it only focuses on the least risk in our port-
folio, which can make the larger risks potentially concentrated. As a motivation, we plot maxj

RCj(x)∑n
i=1 RCi(x)

and

minj
RCj(x)∑n
i=1 RCi(x)

for LIRA with increasing target returns and the new algorithm we introduce in this section ϵ-ORBIT
in Figure 2 (here, n = 6)

As we can see, LIRA is not able to control maxj
RCj(x)∑n
i=1 RCi(x)

as the risk appetite increases. To fix this, we must
incorporate the maximum risk in our portfolio into the spread metric. To this extent, define the ORBIT problem as,

min
x∈PR

max
i,j

RCi(x)

RCj(x)︸ ︷︷ ︸
Total Risk Spread Ratio, ΘR

Substituting expressions for risk contributions, we get the following optimization problem,

min
x∈PR

max
i,j

xi(Σx)i
xj(Σx)j

= min
x∈PR

max
i,j

x⊤Σ(i)x

x⊤Σ(j)x
(ORBIT)

As discussed above, our objective is challenging due to the non-convex nature of the quadratic forms. To address
this, we seek approximations to

x∗ ∈ argmin
x∈PR

max
i,j

xi(Σx)i
xj(Σx)j

Specifically, we derive a constant-factor approximation for ORBIT by constructing an efficient algorithm— a second-
order conic program (SOCP)—to find x∗ such that

max
i,j

RCi(x∗)

RCj(x∗)
≤ α(Σ, R)

(
max
i,j

RCi(x
∗)

RCj(x∗)

)
, α ≥ 1

where x∗ is an optimal solution to ORBIT. Next, we bound the value of α in terms of the covariance matrix, Σ and
our return target, R. We then test the magnitude of α(Σ, R) on real world and simulated data. Before we move onto
specifying our algorithm, we mention two things that motivate our work. Firstly,

max
i,j

RCi(x)

RCj(x)
≥ 1, ∀x ∈ PR
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Figure 1: Risk Contributions for high and moderate risk (left and right) appetite for LIRA and ϵ-ORBIT respectively (top and
bottom).
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Figure 2: Spread of Risks for LIRA and ϵ-ORBIT with increasing targets, here risk appetite is γ, defined by R = γmaxi ri + (1−
γ)mini ri

And moreover,

max
i,j

RCi(x)

RCj(x)
= 1, ∀R ≤ rERC

This means that if we have a return target less than rERC it is optimal (w.r.t. Total Risk Spread Ratio), to pick
xERC. So not only do we provide an approximation algorithm to ORBIT, we also provide bounds to maxi,j

RCi(x)
RCj(x)

in the
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regime, R ≤ rERC

3.2.1 Constant Factor Approximation to ORBIT: ϵ-ORBIT

As previously motivated, we now develop an approximation algorithm for ORBIT. The following theorem formalizes
our result:

Theorem 4. let x∗ be an optimal solution to ϵ-ORBIT with objective value Θ∗, x∗ be an optimal solution to ORBIT
with objective value Θ∗. Moreover, assume that,

x∗⊤x∗ ≤ E
[
x⊤x

]
, x ∼ Dir(1, . . . , 1)

Then x∗ is a

1 +

√∑
k

Σ2
k,i − Σi,i

∑
i,j

Σ−1
i,j

 approximation to ORBIT, i.e.

Θ(x∗) ≤ α(Σ, R)Θ(x∗)

where,

α(Σ, R) =

1 +

√∑
k

Σ2
k,i − Σi,i

∑
i,j

Σ−1
i,j


Where ϵ-ORBIT is our approximation algorithm to ORBIT. Moreover, ϵ-ORBIT is an efficient algorithm and is an

SOCP that can be solved easily by modern optimizers. Our algorithm corresponding to this bound is given by,

Algorithm 2 ϵ-ORBIT
Input: Σ ≻ 0 and return target R

1. Compute λ = −maxi

{√∑
kΣ

2
k,i−Σi,i

2

}
2. Solve the Second Order Conic Program (SOCP)

min y

s.t.

∥∥∥∥∥∥
 v

zj
(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j∥∥∥∥∥∥
1
y
v

∥∥∥∥∥∥
2

≤ y + v

1 ≥
∥∥∥(Σ(i) − λI)

1
2 z
∥∥∥
2

r⊤z = w

1⊤z = w

and obtain optimal solution (z∗, w∗, y∗, v∗)

return x∗ = z∗

w∗

Corollary 5. (Proximity of ϵ-ORBIT to risk parity) If R ≤ rERC, x∗ be an optimal solution to ϵ-ORBIT and xp be a
risk parity solution and γ chosen such that xp feasible for ϵ-ORBIT, then

max
i,j

x∗
i (Σx)i

x∗
j (Σx

∗)j
− 1 ≤ |λ|

(
n

x⊤
p xp

x⊤
p Σxp

− 1

λ∗

)
This corollary is very important as we don’t have a reduction corollary to risk parity, unlike the one in LIRA. We

now present a corollary that shows the proximity of ϵ-ORBIT to risk parity.
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Discussing our bound α(Σ, R)

In this section we make efforts to improve our bound α(Σ, R) and to provide its behavior in the case of weakly
correlated assets. From the proof of theorem 1, it will easily follow that,

α(Σ, R) ≤


1 +


maxi

√∑
k

Σ2
k,i − Σi,i


2


x∗⊤x∗

maxi x∗
i (Σx

∗)i



≤


1 +


maxi

√∑
k

Σ2
k,i − Σi,i


2


x∗⊤x∗

min
x∈PR

max
i

xi(Σx)i︸ ︷︷ ︸
P


Where x∗ is optimal solution to ORBIT. We will see in the proof of theorem 1 that the above bound is a lot

better than the bound for α stated in theorem 1. To compute this bound however, we need to be able to solve the
following problem P

min
x∈PR

max
i

xi(Σx)i

The above problem is not convex at first sight, however we can find a lower bound by solving the following problem,

min γ

s.t. γ ≥
∥∥∥(Σ(i) − λI)

1
2x
∥∥∥
2

r⊤x = R

1⊤R = 1 (P′)

The problem P’ gives us a solution x, whose properties are described in the following lemma,

Lemma 6. Let x be an optimal solution to above problem P’, let x∗ be an optimal solution P.
Define ϵ = λ∥x− x∗∥2, then we have that

min
x∈PR

max
i

xi(Σx)i ≤ min
x∗∈PR

max
i

x∗
i (Σx

∗)i + ϵ

That is, the optimality gap is given by ϵ.

Now if ϵ is small enough, it is seen that the revised bound is much better than the bounds stated in theorem 1.
Moreover, we highlight the effectiveness of our bound on real world data, and provide monte carlo simulations of our
unsimplified bound on the simplex where portfolios are drawn from in the appendix A.1. This will be discussed in the
proofs section. Now, we analyze the behavior of our bound when our assets are weakly correlated, i.e., the off-diagonal
terms on the covariance matrix have lower magnitude. It is easily noticed that our bound for ϵ- ORBIT gets better as
the covariances go to zero. This is because

max
i


√∑

k

Σ2
k,i − Σi,i

 =

√∑
k

Σ2
k,I − ΣI,I

≤ ΣI,I +

√√√√∑
k ̸=I

Σ2
k,I

︸ ︷︷ ︸
∵
√

|a|+|b|≤
√

|a|+
√

|b|

−ΣI,I

≤ max
j


√√√√∑

k ̸=j

Σ2
k,j


≤

√
n max

i,j,i ̸=j
|Σi,j |
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Tightness in the diagonal case is expected as we saw in our preliminary example in the introduction- ORBIT reduces
to a linear programming (LP) in the uncorrelated case. Approximate reduction is also seen around a neighborhood of
small correlation values. More formally, we have the following corollary:

Corollary 7. Let V be diagonal matrix of volatilities of Σ and define Σγ to be

Σγ = γV+ (1− γ)Σ

Then we have that,

lim
γ→1

α(Σγ , R) = 1

Moreover, ∃γ′ such that, ∀γ ≥ γ′,

α(Σ, R) ≤ O

(
1 +

(1− γ)K

L− (1− γ)M

)
for K,L,M that depend on Σ. This also characterizes the rate at which α(Σ, R) goes to 1.

The above corollary formalizes the fact that as the strength of the correlations go to zero, our bound on ϵ- ORBIT
becomes tighter. We will use real world data to test the effectiveness of ϵ-ORBIT for return targets more than that of
risk parity. Another thing to note is that our bound on α is so for independent on R, the return target. As we will
see in the proof of the above theorem, our bound can slightly be modified,

α(Σ, R) =


1 +

nmaxi

√∑
k

Σ2
k,i − Σi,i


2

(
1∑

i,jΣ
−1
i,j

+ h(R)

)


where h(R) is a monotonic increasing function in R. So far we give algorithms for risk diversification while fixing
portfolio volatility to be our risk measure.

3.2.2 CVaR Budgeting Involving Targets (CVaR-BIT)

We now move onto considering a different risk measure, conditional value at risk- CVaR. We provide our next algorithm
for risk diversification using this risk measure- CVaR budgeting involving targets, CVaR-BIT. Let Fr(z) = P(r ≤ z),
denote the cumulative distribution function of portfolio return r. We define value at risk and conditional value at risk
at level α to be:

VaRα = min{z : Fr(z) ≥ α}

and

CVaRα = E [r|r ≥ VaRα]

Now assuming normal returns, i.e., r ∼ N (Σ, µ), from [17] we have that,

CVaRα(x) =
ϕ(Φ−1(α))

1− α

√
x⊤Σx− r⊤x

The risk contributions for CVaR are given by:

RCCVaR
i (x) =

∂CVaR(x)

∂xi
xi

which implies

RCCVaR
i (x) = −µixi +

ϕ(Φ−1(α))

1− α

xi(Σx)i√
x⊤Σx

We now define our risk spread metric:

ΘCVaR(x) =
mini RCCVaR

i (x)

CVaR(x)

=
mini

{
−µixi +

ϕ(Φ−1(α))
1−α

xi(Σx)i√
x⊤Σx

}
CVaR(x)

12



and our problem CVaR budgeting involving risks CVaR-BIT,

max
x∈PR,γ

mini RCCVaR
i (x)

CVaR(x)
= max

x∈PR,γ

mini

{
−µixi +

ϕ(Φ−1(α))
1−α

xi(Σx)i√
x⊤Σx

}
CVaR(x)

Here, we use the set PR,γ for analytical tractability. Moreover, it helps us bound our portfolio volatility as it is no
longer our risk measure. To motivate our results, let’s try to diversify contributions of CVaR using LIRA, ϵ-ORBIT and
our new algorithm that we obtain in this section.
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Figure 3: CVaR Risk Contributions for LIRA(Top), ORBIT(Middle) and CVaR-ORBIT(Bottom) for low(left) and high(right) risk
appetites, γ = 0.2, 0.8 respectively

It is clearly seen that while LIRA and ϵ-ORBIT worked well on volatility as a risk measure, CVaR risk measure
diversification seemed to not be this effective. However, the algorithm that we introduce in this section seems to have
superior performance in diversifying CVaR. In this vein, we now have the following theorem,

Theorem 8. Assume that,

ΘL(xL) ≥
(1− α)maxj rj

∑
i,j Σ

−1
i,j

ϕ(Φ−1(α))

and that,

max
j

rj

∑
i,j

Σ−1
i,j

 ≤ wα
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where ΘL and xL are spread metric and solution to LIRA. Moreover, assume r ≥ 0. Then there exists an efficient
algorithm that finds x∗,

ΘCVaR(x∗) ≥ ϵΘCVaR(x∗)

ϵ =

(
wα

√
x⊤
∗ Σx∗

CVaR(x∗)

)(
1− SR∗

wα

)
ΘCVar(x∗)

Where SR∗ is the optimal value of the Sharpe ratio* problem,

max
x∈PR

r⊤x√
x⊤Σx

Here, x∗ is optimal solution to CVaR-LIRA. The algorithm to find such an x∗ is given by:

Algorithm 3 ϵ-CVaR-BIT
Input: Σ ≻ 0 and return target R

1. Compute λ− = −maxi

{√∑
kΣ

2
k,i−Σi,i

2

}
2. For a long enough horizon, H, choose Rj = (r − emini,t∈H rti)j
3. Solve the convex problem

min
z

z⊤Σz

s.t. ui ≤
ϕ(Φ−1(α))

1− α
(Σz)i − ri

∥∥∥Σ 1
2 z
∥∥∥
2
, ∀i∥∥∥∥∥∥

 u
zj

(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j

r⊤z ≥ Rw

e⊤z = w

(P)

and obtain optimal solution x∗

return x∗

It has been shown in the literature that it is better to consider a heavy-tailed distribution for analyses involving
CVaR because

- Returns are not normally distributed in practice

- Effects of CVaR are seen more predominantly with heavy tailed distributions

Previous works suggest using the t-distribution, where CVaR is given by

ϕ(Φ−1(α))
√
x⊤Σx− r⊤x.

Our method can be directly applied to this expression as well. We now give a summary of our algorithms, what risk
measure they use and under what framework do they diversify risks (θ) in the following table,

Table 1: Risk Distribution for 1/n and MVO

Algorithm Risk Measure Diversification Measure θ
LIRA Volatility −mini

xi∑n
j=1 xj

ϵ-ORBIT Volatility maxi,j
xi

xj

CVaR-LIRA cVaR −mini
xi∑n

j=1 xj
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4 Simulations and Numerical Experiments

4.1 Experiments for Comparison with Risk Parity and Evolution of Spread with γ

Here, we increase our risk appetite γ defined as,

R = γmin
j

rj + (1− γ)max
j

rj

and show the changes in our risk distribution for ϵ- ORBIT and LIRA. Here we use simulated geometric brownian
motion.
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Figure 4: Evolution of risk contributions with increasing values of γ (increasing left to right top to bottom, γ =
0.45, 0.48, 0.51, 0.54, 0.57, 0.6) for LIRA
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Figure 5: Evolution of risk contributions with increasing values of γ (increasing left to right top to bottom, γ =
0.45, 0.48, 0.51, 0.54, 0.57, 0.6) for ϵ-ORBIT

4.2 Evolution of Risk Contributions and Spread Metrics over Risk Appetite: Our
Algorithms and Benchmarks

In this section, we provide evolution of our risk spread metrics for LIRA and ϵ-ORBIT over risk appetite/ We compute
these quantities over simulated geometric Brownian motion with fixed drift and volatility. The benchmarks we consider
over our algorithms are, 1/n, MVO with return lower bound R and conic program as given by model A in [11]. Since
1/n cannot achieve all possible returns, i.e.

R1/n =

n∑
i=1

ri

and MVO suffers from portfolio concentration, i.e. for high values of R it is actually desirable for the algorithm to
take some S ⊂ [n] s.t

xi = 0, ∀i ∈ S

causing our risk ratio to blow up, we do not plot these in the figures below. Plots for these two benchmarks can
be found in the Appendix.
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Figure 6: Evolution of Θ(x) = minj
RCj(x)∑n
i=1 RCi

and maxj
RCj(x)∑n
i=1 RCi

with γ

We cannot really plot MVO and 1/n portfolios on these graphs, due to problems discussed in Table 1. We also
provide some statistics for these algorithms.

Table 2: Risk Distribution for 1/n and MVO

Algorithm Limitations Description

1/n Return agnostic, cannot achieve a return higher than
∑

i ri
n

Risk Ratio Θ for
the three simulations= 4.12, 3.14, 2.78

MVO Risk Ratio blows to infinity due to portfolio concentration

γc for the
three simulations= 0.73, 0.82, 0.71
(This is the risk appetite for which

the risk ratio blows up)
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4.3 Effectiveness of our Bounds on Real World Data
We have already discussed conditions under which our bounds for ϵ-ORBIT provide a good approximation to ORBIT.
We now test the effectiveness of our bounds on real-world data. We consider stocks in the S&P 500, and consider four
1-year windows to test the effectiveness of our bounds. We also provide a table that reports the average value of our
bounds.

Monte Carlo Simulations, Rayleigh Quotient Interpretation
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Figure 7: Evolution of Θ(x) = maxi,j
RCi
RCj

over an S&P 500 portfolio along with proven bounds

4.4 Performance on S&P 500 and Mutual Funds
We now demonstrate portfolio performance on real world S&P 500 data of our algorithms. We fix our asset data and
sequentially increase our risk appetite across the following algorithms- LIRA, ϵ-ORBIT,CVaR-LIRA, MVO, 1/n.
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Table 3: Average value of

1 +
nmaxi

(√∑
kΣ2

k,i
−Σi,i

)∑
i,jΣ

−1
i,j

2

 and |λ|
(
n

x⊤
p xp

x⊤
p Σxp

− 1
λ∗

)
over 200 cycles

Algorithm Number of Cycles Implemented Average value of our bound
Average value of our bound on

ΘR(x)− 1
in the risk parity regime

ϵ-ORBIT 200 1.031 0.234

2000 2004 2008 2012 2016 2020 2024
T (Days)

0

2

4

6

8

10

12

Po
rtf
ol
io
 V
al
ue

MVO
LIRA
ORBIT
cVaR LIRA
1/n

2000 2004 2008 2012 2016 2020 2024
T (Days)

0

2

4

6

8

10

12

Po
rtf
ol
io
 V
al
ue

MVO
LIRA
ORBIT
cVaR LIRA
1/n

2000 2004 2008 2012 2016 2020 2024
T (Days)

0

2

4

6

8

10

12

Po
rtf
ol
io
 V
al
ue

MVO
LIRA
ORBIT
cVaR LIRA
1/n

2000 2004 2008 2012 2016 2020 2024
T (Days)

0

2

4

6

8

10

12

14

Po
rtf
ol
io
 V
al
ue

MVO
LIRA
ORBIT
cVaR LIRA
1/n

2000 2004 2008 2012 2016 2020 2024
T (Days)

0

2

4

6

8

10

12

14

16

Po
rtf
ol
io
 V
al
ue

MVO
LIRA
ORBIT
cVaR LIRA
1/n

2000 2004 2008 2012 2016 2020 2024
T (Days)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Po
rtf

ol
io

 V
al

ue

MVO
LIRA
ORBIT
cVaR LIRA
1/n

Figure 8: Evolution of portfolios for LIRA, ϵ-ORBIT,CVaR-LIRA, MVO, 1/n over an S&P 500 for increasing γ. γ increasing left to
right, top to bottom
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We also provide statistics of the portfolios across different risk appetites,

Table 4: Financial Statistics for γ=0.1, 0.6

Algorithm Portfolio Value Sharpe MDD
ϵ-ORBIT 8.121 3.194 0.412

LIRA 8.091 3.193 0.413
MVO 4.013 2.923 0.331

cVaR-LIRA 3.912 2.69 0.312
1/N 9.912 3.211 0.551

Algorithm Portfolio Value Sharpe MDD
ϵ-ORBIT 15.131 3.356 0.342

LIRA 12.613 3.273 0.339
MVO 15.312 3.263 0.371

cVaR-LIRA 10.012 3.08 0.251
1/N 9.912 3.211 0.551

5 Proofs of Propositions

Theorem 9. (LIRA) There exists an efficient algorithm A that finds x∗ solving maxx∈PR minj
RCj(x)∑n

i=1
RCi(x)

, for risk

measure R(x) =
√
x⊤Σx

Proof. First we rewrite our optimization problem using expressions for RCj(x) (volatility to be our risk measure)

max
x∈PR

min
j

RCj(x)
n∑

i=1

RCi(x)

⇐⇒ max
x∈PR

min
j

xj(Σx)j
x⊤Σx

(P)

As we will see in the next theorem, our objective is a quadratic form,

xj(Σx)j = x⊤Σ(j)x

where,

Σ
(i)
k,l =


Σi,l

2 k = i, l ̸= i
Σi,l

2 l = i, k ̸= i

Σi,i i = k = l

0 o.w.

We show in the next theorem that this matrix has a negative eigenvalue and the quadratic form therefore in general
is not convex. Hence we need to convert our problem into a convex one. To this extent, we use the epigraph trick to
obtain,

max
x∈PR

min
j

xj(Σx)j
x⊤Σx

⇐⇒︸ ︷︷ ︸
1

max
x∈PR

u2

x⊤Σx

s.t. u2 ≤ xj(Σx)j

(P1)

The first equivalence (1) uses the fact that, in an optimal solution (x∗, u∗) in the right hand side problem,

u∗2 = min
j

x∗
j (Σx

∗)j
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Now rewriting the constraint in problem P1 as a norm,

⇐⇒ max
x∈PR

u2

x⊤Σx
⇐⇒︸ ︷︷ ︸

2

max
x∈PR

u2

x⊤Σx

s.t.
√(

u2 + (Σx)2j + x2
j

)
≤ (xj + (Σx)j) s.t.

∥∥∥∥∥∥
 u

xj

(Σx)j

∥∥∥∥∥∥
2

≤ xj + (Σx)j

(P2)

Here, the second equivalence (2) reformulates our inequality as a conic constraint. We finally introduce a change of
variables on P2

⇐⇒ max
1

z⊤Σz
⇐⇒︸ ︷︷ ︸

3

min z⊤Σz

s.t.

∥∥∥∥∥∥
 1

zj
(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j s.t.

∥∥∥∥∥∥
 1

zj
(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j

1⊤z = w 1⊤z = w

r⊤z ≥ Rw r⊤z ≥ Rw

z ≥ 0 z ≥ 0 (LIRA)

The third equivalence (3) introduces a change of variables, z = x/u. To see this equivalence in detail, consider a
feasible solution (x, u) for our second problem. Now, apply the following transformation:

x

u
7→ z̃,

1

u
7→ w̃

It is easy to see that ∥∥∥∥∥∥
 1

z̃j
(Σz̃)j

∥∥∥∥∥∥
2

≤ z̃j + (Σz̃)j ⇐⇒

∥∥∥∥∥∥
 u

xj

(Σx)j

∥∥∥∥∥∥
2

≤ xj + (Σx)j

1⊤z̃ = w̃ ⇐⇒ 1⊤x = 1

r⊤z̃ ≥ Rw̃ ⇐⇒ r⊤x ≥ R

Moreover,

1

z̃⊤Σz̃
=

u2

x⊤Σx

It is easily seen that, z̃, w̃ is feasible for the third problem, more so with the same objective value. Conversely,
consider (z, w) feasible for the fourth problem, consider transformation,

z

w
7→ x̃

1

w
7→ ũ

Again, it follows very easily that x̃, ũ are feasible for the original problem with the same objective cost. Hence
these problems are equivalent. The fourth equivalence follows trivially, and our optimization problem is convex. All
of this shows that

P ⇐⇒ LIRA

Corollary 10. Let rERC be return of an ERC portfolio, with Σ. If R ≤ rERC, and x∗ is an optimal solution for LIRA,
then x∗ = xp, where xp is an ERC portfolio given Σ.

Proof. Trivially,
RCj(x)
n∑

i=1

RCi(x)

≤ 1

n

If R ≤ rERC, xp is feasible for LIRA. Moreover,
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RCj(x)
n∑

i=1

RCi(x)

=
1

n

which completes the proof

Theorem 11. let x∗ be an optimal solution to ϵ-ORBIT with objective value Θ∗, x∗ be an optimal solution to ORBIT
with objective value Θ∗. Moreover, assume that,

x∗⊤x∗ ≤ E
[
x⊤x

]
, x ∼ Dir(1, . . . , 1)

Then x∗ is a

1 +

√∑
k

Σ2
k,i − Σi,i

∑
i,j

Σ−1
i,j

 approximation to ORBIT, i.e.

Θ(x∗) ≤ α(Σ, R)Θ(x∗)

where,

α(Σ, R) =

1 +

√∑
k

Σ2
k,i − Σi,i

∑
i,j

Σ−1
i,j


Proof. We first reformulate our problem using the epigraph trick as in theorem 1, minx∈=PR maxi,j

RCj(x)
RCj(x)

as,

min
x∈PR

t2

u2

s.t. t2 ≥ xj(Σx)j

u2 ≤ xj(Σx)j

(ORBIT)

Now notice that, the second constraint can be written as a conic constraint for formulating a convex problem,

u2 ≤ xj(Σx)j ⇐⇒

∥∥∥∥∥∥
 u

xj

(Σx)j

∥∥∥∥∥∥
2

≤ xj + (Σx)j

However, the first constraint poses problems as it can be potentially non-convex (exterior of a convex region). Here
we use a simple trick by adding a term to our constraint,

t2 ≥ xj(Σx)j − x⊤λIxx⊤λIxx⊤λIx

where, λ = mini E−(Σ
(i)), E−(A) computes the smallest eigenvalue of A and Σi is the matrix given by,

Σ
(i)
k,l =


Σi,l

2 k = i, l ̸= i
Σi,l

2 l = i, k ̸= i

Σi,i i = k = l

0 o.w.

Here Σ(i) is such that, xj(Σx)j = x⊤Σ(i)x, and our extra term , λx⊤Ix ensures that our first constraint is convex.
This is because the RHS of the constraint is,

x⊤
(
Σ(i) − λI

)
x

Now the jth eigenvalues of Σ(i) − λI are,

λ
(i)
j − λ = λ

(i)
j −min

l
E−(Σ

(l)) ≥︸ ︷︷ ︸
λ
(i)
j ≥E−(Σi)≥minl E−(Σ(l))

0

Making Σ(i) − λI ⪰ 0, and our constraint positive. Now we can formulate an SOCP approximation to our original
problem as,
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⇐⇒ min
x∈PR

t2

u2
⇐⇒︸ ︷︷ ︸

1

min
x∈PR

t2

u2

s.t. t2 ≥ xj(Σx)j − λx⊤Ix s.t. t2 ≥ x⊤
(
Σ(i) − λI

)
x

u2 ≤ xj(Σx)j u2 ≤ xj(Σx)j (P)

Here equivalence (1) follows from the definition of Σ(i). Now we have a non-convex objective, t2

u2 . However, we can
resolve this via dividing the contraints in P by t,

⇐⇒ min
x∈PR

t2

u2
⇐⇒︸ ︷︷ ︸

2

min
1

v2

s.t. 1 ≥
(x
t

)⊤ (
Σ(i) − λI

)(x
t

)
s.t. 1 ≥ z⊤

(
Σ(i) − λI

)
z

u2

t2
≤ xj

t
(Σ

x

t
)j v2 ≤ zj(Σz)j

γ2w2 ≤ zj(Σz)j

1⊤z = w

r⊤z ≥ Rw (P2)

In 2, we use a similar idea as in the first theorem, we perform a change of variables to easily notice the forward
direction,

x

t
7→ z̃,

u

t
7→ ṽ,

1

u
7→ w̃

Conversely for the reverse implication we have the following transformation,

v

w
7→ ũ,

1

w
7→ t̃,

z

w
7→ x̃

The feasibility is preserved with the same objective value, implying the equivalence. Our objective is now convex,
however we can convert it to a second order conic program (SOCP), by introducing variable y in P2

⇐⇒ min y ⇐⇒︸ ︷︷ ︸
3

min y

s.t. 1 ≥ z⊤
(
Σ(i) − λI

)
z s.t. 1 ≥

∥∥∥(Σ(i) − λI)
1
2 z
∥∥∥
2∥∥∥∥∥∥

 v
zj

(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j

∥∥∥∥∥∥
 v

zj
(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j∥∥∥∥∥∥
 γw

zj
(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j

∥∥∥∥∥∥
 γw

zj
(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j

1

v
≤ y

∥∥∥∥∥∥
1
y
z

∥∥∥∥∥∥
2

≤ z + v

r⊤z ≥ Rw r⊤z ≥ Rw

1⊤z = w 1⊤z = w

(ϵ-ORBIT)

Here 3 follows by writing 1/v ≤ y as a conic constraint. All of this implies,

P ⇐⇒ ϵ-ORBIT

Since we added an extra term (−λx⊤Ix) to the optimization problem, we must confirm the interpretability of our
problem, i.e. ensure that we actually measure maxi,j

RCi(x)
RCj(x)

.
First constraint on P will necessarily pick maxi xi(Σx)i and set t2 = maxi xi(Σx)i−λx⊤x since λx⊤x is independent

of the index, and the second constraint will necessarily pick, minj xj(Σx)j and set u2 = minj xj(Σx)j . If t2 >
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maxi x
∗
i (Σx

∗)i − λx∗Tx∗, for optimal x∗, we can improve our objective value by decreasing the value of t and hence
our inequality must be tight, the same logic follows for u. This implies that our objective value becomes,

xI(Σx)I − λx⊤x

xJ(Σx)J

where I, J are such that,

RCI(x)

RCJ(x)
=

maxi RCi(x)

minj RCj(x)
, ∀i, j

=⇒ RCI(x)

RCJ(x)
= max

i,j

RCi(x)

RCj(x)

Now we prove the approximation bounds on our solution x for ϵ-ORBIT, consider a solution x∗ for minx∈=PR maxi,j
RCj(x)
RCj(x)

.

Note that (x, u, t) = (x∗,
√

mini x∗
i (Σx

∗)i,
√

maxj x∗
j (Σx)

∗
j )− λx∗Tx is a feasible candidate,

O∗ =
(x∗)I(Σx∗)I + |λ|x⊤

∗ x∗

(x∗)J(Σx∗)J

= Θ∗

(
1 +

|λ|x⊤
∗ x∗

(x∗)I(Σx∗)I

)
≤ O(x∗)

Here O(x) is objective value of ϵ-ORBIT for portfolio x and I, J as defined in the proof of theorem 1. Now call,
Θ = maxi,j

RCi(x)
RCj(x)

, Θ∗ = maxi,j
RCi(x

∗)
RCj(x∗) . Now from the optimality of x∗

Θ∗

(
1 + min

i
min
x

|λ|x⊤x

xi(Σx)i

)
≤ Θ∗

(
1 +

|λ|x⊤
∗ x∗

(x∗)I(Σx∗)I

)
= Θ∗

(
1 +

|λ|x⊤
∗ x∗

x⊤
∗ Σ

(I)x∗

)
≤ Θ∗

(
1 +

|λ|x∗Tx∗

(x∗)I∗(Σx∗)I∗

)
≤ Θ∗

(
1 +

|λ|
(x∗)I∗(Σx∗)I∗

)
, ∵ x∗Tx∗ ≤ 1

≤ Θ∗

1 +
|λ|(

x∗TΣx∗

n

)


≤ Θ∗
{
1 +

n|λ|
minx∈PR x⊤Σx

}
The last inequality follows since,

x⊤Σx =

n∑
i=1

xi(Σx)i

≤ n
{
max

i
xi(Σx)i)

}

=⇒ x⊤Σx

n
≤ max

i
xi(Σx)i

Now,

min
y⊤Qy≥0

y⊤y

y⊤Qy
=

1

maxy⊤Qy≥0,∥y∥2=1 y⊤Qy

It can easily be shown that, maxy⊤Qy≥0,∥y∥2=1 y
⊤Qy is the size of the largest positive eigenvalue of Q. We first

write down the Lagrangian,

L(x, µ, ν) = y⊤Qy + µ(y⊤Qy)− ν(y⊤y)
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∇L(x, µ, ν) = 2(1 + µ)Qy − 2νy = 0

=⇒ Qy =
ν

1 + µ
y, ∵ µ ≥ 0

This implies, ν
1+µ must be an eigenvalue, moreover,

y⊤Qy =
ν

1 + µ
y⊤y =

ν

1 + µ

Which implies that the objective value is the largest positive eigenvalue of Q. This implies,

Θ∗

(
1 + min

i

|λ|
E+(Σ(i))

)
≤ Θ∗

{
1 +

n|λ|
minx∈PR x⊤Σx

}
To finish our proof, we compute the eigenvalues of Σ(i),∀i.

Σ(i) =



0 · · · Σ1,i

2 · · · 0
...

. . .
...

. . .
...

Σi,1

2 · · · Σi,i · · · Σi,n

2
...

. . .
...

. . .
...

0 · · · Σn,i

2 · · · 0


We now perform two operations on Σ(i) −λI, we fist swap the ith row with the last row and then ith column with

the last column (two swaps ensure that the determinant of our new matrix is the same as Σ(i)−λI ), to get M , where,

−M =


λ 0 · · · 0

Σi,1

2

0 · · · 0
Σi,2

2
...

...
. . .

...
...

0 0 · · · λ
Σi,n−1

2
Σi,1

2
Σi,2

2 · · · Σi,n−1

2 λ− Σi,i


We can write −M as the following block matrix,

−M =

[
D u
u⊤ λ− Σi,i

]
Where D = λI ∈ R(n−1)×(n−1), and u ∈ Rn−1 such that,

uj =

{
Σi,j j ̸= i

Σi,n j = i

Now we can use Schur’s lemma to compute the determinant of −M given by,

det(−M) = det(D)
(
λ− Σj,j − u⊤D−1u

)
= λn−1

(
λ− Σj,j − u⊤D−1u

)
= λn−1

(
λ− Σj,j −

1

λ
u⊤u

)

= λn−1

λ− Σj,j −
1

λ

∑
j ̸=i

Σ2
j,i

4

 = 0

=⇒ λ =

Σi,i ±
√∑

j

Σ2
i,j


2

, 0

This computation also allows us to get rid of the assumption, λ < 0, because

Σi,i −
√∑

j

Σ2
i,j

 ≤ 0 =⇒ E(Σ(i)) <

0,∀i.
Hence putting everything together,

25



|λ| = max
i



√∑
k

Σ2
k,i − Σi,i

2

 , λ∗ = max
i



√∑
k

Σ2
k,i +Σi,i

2


and it is well known that,

min
1⊤x=1

x⊤Σx =
1∑

i,j

Σ−1
i,j

=⇒ Θ∗ ≤
(
1 + ∆1

1 + ∆2

)
Θ∗

Where,

∆1 =

nmaxi


√∑

k

Σ2
k,i − Σi,i

∑
i,j

Σ−1
i,j

2
, ∆2 =

maxi


√∑

k

Σ2
k,i − Σi,i


maxi


√∑

k

Σ2
k,i +Σi,i


It is easily seen that, √∑

k

Σ2
k,i − Σi,i ≥ 0

=⇒ max
i


√∑

k

Σ2
k,i − Σi,i

 ≥ 0

This implies that,

Θ∗ ≤


1 +

nmaxi

√∑
k

Σ2
k,i − Σi,i

∑
i,j

Σ−1
i,j

2

︸ ︷︷ ︸
α(Σ,R)

Θ∗

which completes our proof.

Corollary 12. Let x be an optimal solution to above problem P’, let x∗ be an optimal solution P.
Define ϵ = 2λ∥x− x∗∥2, then we have that

min
x∈PR

max
i

xi(Σx)i ≤ min
x∗∈PR

max
i

x∗
i (Σx

∗)i + ϵ

That is, the optimality gap is given by ϵ.

Proof. First we restate problem P’

min γ

s.t. γ ≥
∥∥∥(Σ(i) − λI)

1
2x
∥∥∥
2

r⊤x = R

1⊤R = 1 (P′)

Then like in ϵ-ORBIT, we see that an optimal x to P’,

γ2 =
(
max

i
xi(Σx)i

)
+ λx⊤x

Then by optimality of x, we have that,
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max
i

xi(Σx)i ≤ max
i

x∗
i (Σx

∗)i + λ
(
x∗⊤x∗ − xTx

)
= max

i
x∗
i (Σx

∗)i + λ
(
∥x∗∥22 − ∥x∥22

)
= max

i
x∗
i (Σx

∗)i + λ
(∣∣∣∥x∗∥2 − ∥x∥2

∣∣∣) (∥x∥2 + ∥x∗∥2)

≤ max
i

x∗
i (Σx

∗)i + λ (∥x− x∗∥2) (∥x∥2 + ∥x∗∥2)

≤ max
i

x∗
i (Σx

∗)i + 2λ (∥x− x∗∥2)

where ϵ is the gap in the norm, 2∥x− x∗∥

Discussing revised bounds: Through corollary 6, we claimed that we were able to improve our bounds on α. Our
new bound was stated to be,

α ≤


1 +


maxi

√∑
k

Σ2
k,i − Σi,i


2


x∗⊤x∗

minx∈PR maxi xi(Σx)i



≤


1 +


maxi

√∑
k

Σ2
k,i − Σi,i


2


x⊤x+ ϵ1

max
{

x⊤Σx
n ,maxi x′

i(Σx
′)i − ϵ2λ

}


where x∗ is optimal solution to ORBIT, x is optimal solution to ϵ-ORBIT and x′ is optimal solution to P’. Moreover, we
have a similar assumption on x∗, x as on x′′, x′, i.e. ∥x∗ − x∥ ≤ 2ϵ1. Here, x′′ is optimal solution to P’. This follows
because,

∣∣∣x∗⊤x∗ − x⊤x
∣∣∣ ≤ (∣∣∣∥x∗∥2 − ∥x∥2

∣∣∣) (∥x∥2 + ∥x∗∥2)

≤ 2 (∥x− x∗∥2) = ϵ

=⇒ x∗⊤x∗ ≤ x⊤x+ ϵ

This bound is potentially better since we don’t divide by the volatility. Dividing by volatility causes two problems,
it (1) provides a conservative lower bound (1/n) to maxi

RCi∑n
j=1 RCj

and (2) it provides a conservative lower bound to
volatility. We combine both of these steps by simply using corollary 6, on problem P. So given that ϵ is small, we
should be getting better bounds for α. This improvement however does rely on some knowledge of ∥x − x∗∥ and is
not as general as the bound we derived in corollary 6.

Corollary 13. Let V be diagonal matrix of volatilities of Σ and define Σγ to be

Σγ = γV+ (1− γ)Σ

Then we have that,

lim
γ→1

α(Σγ , R) = 1

Moreover, ∃γ′ such that, ∀γ ≥ γ′,

α(Σ, R) ≤ O
(
1 +

(1− γ)K

L− (1− γ)M

)
for K,L,M that depend on Σ. This also characterizes the rate at which α(Σ, R) goes to 1.
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Proof. Because,
√

|a|+ |b| ≤
√

|a|+
√
|b|, using this argument iteratively on α(Σ, R),

α(Σγ , R) ≤

1 +

nmaxi
∑
j ̸=i

|(Σγ)i,j |
∑
i,j

(Σ−1
γ )i,j

2


Now, since for distinct i, j,

(Σγ)i,i = Σi,i, (Σγ)i,j = (1− γ)Σi,j

∃Σγ around Σ0 = V (or equivalently around γ = 1), such that,

Σi,i > (1− γ)
∑
j ̸=i

Σi,j , ∀i

Now, since Σ diagonally dominant, we have that, ([5]),∥∥Σ−1
γ

∥∥
∞ ≤ 1

mini

Σi,i − (1− γ)
∑
j ̸=i

∣∣Σ−1
i,j

∣∣
Now by definition,

∥∥Σ−1
γ

∥∥
∞ = max

i

n∑
j=1

∣∣(Σγ)
−1
i,j

∣∣ ≥
∑
i,j

(Σγ)
−1
i,j

n

Putting everything together,

lim
γ→0

α(Σγ , R) ≤ lim
γ→0

1 +

nmaxi
∑
j ̸=i

|(Σγ)i,j |
∑
i,j

(Σ−1
γ )i,j

2



≤ lim
γ→0

1 +

n2 maxi
∑
j ̸=i

|(Σγ)i,j |
∥∥Σ−1

γ

∥∥
∞

2



≤ lim
γ→0


1 +

n2 maxi
∑
j ̸=i

|(Σγ)i,j |

mini

(Σγ)i,j −
∑
j ̸=i

|(Σγ)i,j |




= 0

This also characterizes the rate at which our bound goes to 1, as γ → 1

Corollary 14. (Proximity to risk parity) If R ≤ rERC, x∗ be an optimal solution to ϵ-ORBIT and xp be a risk parity
solution and γ chosen such that xp feasible for ϵ-ORBIT, then

max
i,j

x∗
i (Σx)i

x∗
j (Σx

∗)j
− 1 ≤ nλ

x⊤
p xp

x⊤
p Σxp

Proof. By assumption and optimality of x∗,

max
i,j

x∗
i (Σx)i

x∗
j (Σx

∗)j
+ |λ| x∗Tx

mini(x∗
iΣx

∗
i )

≤ 1 + n|λ|
x⊤
p xp

x⊤
p Σxp

Now trivially,

max
i,j

x∗
i (Σx)i

x∗
j (Σx

∗)j
≥ 1
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=⇒ |λ| x∗Tx

mini(x∗
iΣx

∗
i )

≤ n|λ|
x⊤
p xp

x⊤
p Σxp

We now have our result,

max
i,j

x∗
i (Σx)i

x∗
j (Σx

∗)j
− 1 ≤ n|λ|

x⊤
p xp

x⊤
p Σxp

− |λ| x∗Tx

mini(x∗
iΣx

∗
i )

≤ n|λ|
x⊤
p xp

x⊤
p Σxp

− |λ| x∗Tx

x∗TΣx∗ ∵ min
i

xi(Σx)i ≤
n∑

j=1

xj(Σx)j = x⊤Σx

≤ n|λ|
x⊤
p xp

x⊤
p Σxp

− |λ|min
x

xTx

xTΣx

≤ n|λ|
x⊤
p xp

x⊤
p Σxp

− |λ|
λ∗ (Optimal Rayleigh quotient value)

≤ |λ|

(
n

x⊤
p xp

x⊤
p Σxp

− 1

λ∗

)

Theorem 15. Assume that,

ΘL(xL) ≥
(1− α)maxj rj

∑
i,j Σ

−1
i,j

ϕ(Φ−1(α))

and that,

max
j

rj

∑
i,j

Σ−1
i,j

 ≤ wα

where ΘL and xL are spread metric and solution to LIRA. Moreover, assume r ≥ 0. Then there exists an efficient
algorithm that finds x∗,

ΘCVaR(x∗) ≥ ϵΘCVaR(x∗)

ϵ =

(
wα

√
x⊤
∗ Σx∗

CVaR(x∗)

)(
1− SR∗

wα

)
ΘCVar(x∗)

Where SR∗ is the optimal value of the Sharpe ratio* problem,

max
x∈PR

r⊤x√
x⊤Σx

Proof. First we write down CVaR-LIRA,

max
x∈PR,γ

min
i

RCCVaR
i = max

x∈PR,γ
ΘCVar(x)

(CVaR-LIRA)

We now consider the problem,

max
x∈PR

u2

wαx⊤Σx

s.t. ui ≤
ϕ(Φ−1(α))

1− α
(Σx)i − ri

√
x⊤Σx, ∀i

u2 ≤ xiui, ∀i
(P)

It is easily seen that the objective value of our problem for optimal x is given by
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u2 = min
i

xiui =
CVar(x)

wα

√
x⊤Σx

mini

{
ϕ(Φ−1(α))

1−α
xi(Σx)i√
x⊤Σx

− rixi

}
CVar(x)

=
CVar(x)

wα

√
x⊤Σx

ΘCVar(x)

Now, assume ri ≥ 0. It is important to ensure that there exists an x ∈ PR such that we have a positive objective
value. This is because of our constraint u2 ≤ xiui that else becomes infeasible. From our assumptions,

∃ x, s.t. ΘL(x) = min
j

RCj∑n
i=1 RCi

≥
(1− α)maxl rl

∑
i,j Σ

−1
i,j

ϕ(Φ−1(α))

=⇒ RCj∑n
i=1 RCi

≥
(1− α)maxl rl

∑
i,j Σ

−1
i,j

ϕ(Φ−1(α))
, ∀j

=⇒ RCj∑n
i=1 RCi

≥
(1− α)rj

∑
i,j Σ

−1
i,j

ϕ(Φ−1(α))
, ∀j

=⇒ RCj∑n
i=1 RCi

≥ (1− α)rj

ϕ(Φ−1(α))
√
x⊤Σx

, ∀j

=⇒ RCj∑n
i=1 RCi

≥ (1− α)rjxj

ϕ(Φ−1(α))
√
x⊤Σx

, ∀j

=⇒ ϕ(Φ−1(α))

1− α

(Σx)j√
x⊤Σx

− rj︸ ︷︷ ︸
uj

≥ 0, ∀j

=⇒ min
i

xiui ≥ 0

Then this problem is equivalent to,

min
z

wαz
⊤Σz

s.t. ui ≤
ϕ(Φ−1(α))

1− α
(Σz)i − ri

∥∥∥Σ 1
2 z
∥∥∥
2
, ∀i∥∥∥∥∥∥

 u
zj

(Σz)j

∥∥∥∥∥∥
2

≤ zj + (Σz)j

r⊤z ≥ Rw

e⊤z = w

(P)

Here we used change of variable,

x

u
→ z,

1

u
→ w

Now consider x∗, an optimal solution to CVar-LIRA. By optimality of x, we have,

CVar(x)
wα

√
x⊤Σx

ΘCVar(x) ≥ CVar(x∗)

wα

√
x∗⊤Σx∗

ΘCVar(x∗)

This implies that,

ΘCVar(x) ≥

(
wα

√
x⊤
∗ Σx∗

CVaR(x∗)

)(
CVar(x∗)

wα

√
x∗⊤Σx∗

)
︸ ︷︷ ︸

γ

ΘCVar(x∗)

We now come up with a lower bound for γ,
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γ =
CVar(x∗)

wα

√
x∗⊤Σx∗

= 1− r⊤x∗

wα

√
x∗⊤Σx∗

= 1− SR(x)

wα

≥ 1− SR∗

wα

Here, SR∗ is the optimal Sharpe ratio for r,Σ. Putting all of this together we have,

ΘCVar(x) ≥

(
wα

√
x⊤
∗ Σx∗

CVaR(x∗)

)(
1− SR∗

wα

)
ΘCVar(x∗)
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